Tuesday, October 13, 2009

The Light Microscope

Microbiologists currently employ a variety of light microscopes in their work; bright-field, dark-field, phase-contrast, and fluorescence microscopes are most commonly used. Modern microscopes are all compound microscopes. That is, the magnified image formed by the objective lens is further enlarged by one or more additional lenses.

The Bright-Field Microscope:-
The ordinary microscope is called a bright-field microscope because it forms a dark image against a brighter background. The microscope consists of a sturdy metal body or stand composed of a base and an arm to which the remaining parts are attached . A light source, either a mirror or an electric illuminator, is located in the base. Two focusing knobs, the fine and coarse adjustment knobs, are located on the arm and can move either the stage or the nosepiece to focus the image.


The stage is positioned about halfway up the arm and holds microscope slides by either simple slide clips or a mechanical stage clip. A mechanical stage allows the operator to move a slide around smoothly during viewing by use of stage control knobs. The substage condenser is mounted within or beneath the stage and focuses a cone of light on the slide. Its position often is fixed in simpler microscopes but can be adjusted vertically in more advanced models.





The curved upper part of the arm holds the body assembly, to which a nosepiece and one or more eyepieces or oculars are attached. More advanced microscopes have eyepieces for both eyes and are called binocular microscopes. The body assembly itself contains a series of mirrors and prisms so that the barrel holding
the eyepiece may be tilted for ease in viewing . The nosepiece holds three to five objectives with lenses of differing magnifying power and can be rotated to position any objective beneath the body assembly. Ideally a microscope should be parfocal—that is, the image should remain in focus when objectives are changed.

The objective lens forms an enlarged real image within the microscope, and the eyepiece lens further magnifies this primary image. When one looks into a microscope, the enlarged specimen image, called the virtual image, appears to lie just beyond the stage about 25 cm away. The total magnification is calculated by multiplying the objective and eyepiece magnifications together.

No comments:

Post a Comment